CERTPARK QUESTION & ANSWER

CERTPARK.COM

Accurate Study Guides,
High Passing Rate!
provides update
free of charge
in one year!

Exam : 400-101

Title : CCIE Routing and Switching

(v5.1)

Version: DEMO

- 1.An IPv6 network has different MTUs on different segments. If the network is experiencing reliability issues, which option is the most likely reason?
- A. The MTU size is greater than 1470 bytes.
- B. The Do Not Fragment bit is marked.
- C. ICMPv6 is filtered.
- D. HSRPv6 is configured incorrectly.

Answer: B

2.Refer to the exhibit.

```
R1
ip community-list 10 permit 64512:100 64512:200 64512:41650 64513:1220
route-map INTERNET-OUT permit 10
  match community 10
router bgp 64512
   no synchronization
   neighbor INTERNET peer-group
  neighbor INTERNET remote-as 64513
  neighbor INTERNET password clsC0
  neighbor 192.168.250.53 peer-group INTERNETER
address-family ipv4
   no synchronization
   neighbor INTERNET send-community both
   neighbor INTERNET route-map INTERNET-OUT out
R1#show bgp 172.29.224.0
BGP routing table entry for 172.29.224.0/24, version 607252621
Paths: (1 available, best #1, table default)
Multipath: eBGP iBGP
   Advertised to update-groups:
      3
   53739
      10.10.153.12 from 10.10.153.120 (10.10.153.12)
         Origin IGP, metric 0, localpref 130, valid, external, best
         Community: 64512:555 64513:200 64513:59090 64512:64002 64513:64090
```

Which two actions can you take to allow the network 1 72.29.224.0/24 to be reachable from peer 192.168.250.53? (Choose two)

- A. Modify the outbound route map to permit all additional traffic.
- B. Configure soft reconfiguration to peering 192.168.250.53
- C. Modify the community list to match community 64513:64090 attached to 172.29.224.0/24.
- D. Configure additional address families to peering 192.168.250.53
- E. Modify the inbound route map to permit all additional traffic

Answer: A, C

3.In an MPLS-VPN environment, what is the effect of configuring an identical set of route targets for a particular VRF but then configuring nonidentical RD accross multiple PE devices?

A. The routes are rejected by remote PE because they have a different RD than its routes.

- B. The routes propagate to the remore PE, but the PE never installs them in its forwarding table.
- C. The routes are correctly managed by the control plane, but there are instances where routes take up twice as much memory.
- D. The routes are not sent to any remote PE with a differnt RD.

Answer: C

4.Drag and drop the OSPFv3 LSA type on the left to the functionality it provides on the right.

Router LSA (Type 1)	advertises an ntemal network or set of networks to routers in other areas
Network LSA (Type 2)	associates a group of prefixes for transit networks or stub network
Iricerarea-prefx LSA wr ABRs(Type 3)	indicates whether the router is part of a virtual link
Interarea-router LSA for ASBRs(Type 4)	collects link-state information and cost information for the
Autonomous system external LSA (Type 5)	provides the link-local address of a outer to other routers on
Link LSA(Type 8)	redistributes external routes
Intra-Area-Prefix LSAs(Type 9)	enables routers to determine the best path to an external network
Answer:	
Router LSA (Type 1)	Iricerarea-prefx LSA wr ABRs(Type 3)
Network LSA (Type 2)	Intra-Area-Prefix LSAs(Type 9)
Iricerarea-prefx LSA wr ABRs(Type 3)	Router LSA (Type 1)
Interarea-router LSA for ASBRs(Type 4)	Network LSA (Type 2)
Autonomous system external LSA (Type 5)	Link LSA(Type 8)
Link LSA(Type 8)	Autonomous system external LSA (Type 5)
Intra-Area-Prefix LSAs(Type 9)	Interarea-router LSA for ASBRs(Type 4)

5. Which three components are in an MPLS header? (Choose three)

A. a 4-bit experimental use field

B. a 4-bit label stack entry

C. an 8-bit TTL

D. a 2-bottom of stack

E. a 3-bit experimental use field

F. a 20-bit label

Answer: C, E, F